Description
Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets.Youll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. Youll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, youll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. Youll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, youll move your NN model to production on the AWS Cloud.By the end of this book, youll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently.
E-Beletrystyka
urlop dodatkowy dla niepełnosprawnych, wniosek o rozłożenie podatku na raty wzór doc, trw steering systems poland sp z oo, filmy lgbt 2019, www lubawa pl, marcin filipek, rabka zdrój park, 1 koron czeskich ile to zł, największy na świecie udział rolnictwa w strukturze pkb, co warto zwiedzic w gdansku, rmk czynne księgowanie, polish permanent residence card, bilety lotnicze gdańsk kraków, dolina 5 stawów szlaki, wośp finał 2018, położenie paneli cena za m2 2020
yyyyy